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Targacept active conformation search (TACS) is a novel variation of well-established three-
dimensional quantitative structure-activity relationship methodologies that seeks to determine
probable conformation(s) of ligands bound to their protein targets. A combination of affinity or
activity data and energetically accessible conformational ensembles, each conformer described
by three-dimensional (3-D) sensitive descriptors, forms the basis of the TACS data model.
Recursive pruning is used to reduce the size of both the conformational ensemble and the
descriptor space until the TACS data model contains just enough information to determine
probable conformation(s) of ligands bound to their protein targets. The TACS algorithm is
comprised of five components: (1) conformational ensemble generation, (2) 3-D sensitive
descriptor calculation, (3) ensemble descriptor preprocessing, (4) model generation, and (5)
prediction of bound conformation(s). Significantly, this method precludes the need for subjective
or objective molecular alignment. We report the application of this technique to five benchmark
protein-ligand couples where the conformation of a bound ligand has been previously
established using X-ray crystallography: 9-cis-retinoic (1) and 9-trans-retinoic acid (2), both
agonists for the retinoic acid receptor γ, compounds KH1060 (3) and MC1288 (4), which bind
to the vitamin D3 receptor, and R04 (5), an inhibitor bound to human rhinovirus 14 thermolysin.
The binding conformations predicted by TACS were compared to the crystallographic structures
extracted from their respective binding sites using root-mean-squared deviation (rmsd) criteria.
Three of the conformations found using TACS were within crystallographic error. 9-cis-Retinoic
acid, 9-trans-retinoic acid, and MC1288, when superimposed on their crystallographic
structures, gave rmsd values of 0.22, 0.17, and 0.34 Å, respectively. The rmsd values for KH1060
(1.54 Å) and R04 (1.01 Å) were larger but still reasonable.

Introduction

Most strategies for the design of new drug candidates
fall into one of two categories: structure based design,
where the three-dimensional (3-D) structure of protein
target is known from either crystallographic or high-
resolution NMR studies, or ligand based design, where
the 3-D structure of the target is unknown. In the
absence of 3-D protein structure, it is difficult to
determine the bound conformation of ligands. Therefore,
a method that generates the probable bound conforma-
tion of ligand(s) would enhance ligand-based drug
design, pharmacophore hypothesis generation, and un-
derstanding of ligand-protein interactions.

Because it is a well-known fact that 3-D (spatial)
properties of biological molecules govern their biological
behavior, the combination of structure-activity rela-
tionship (SAR) data, conformationally sensitive 3-D
descriptors, and a representation of energetically ac-
cessible conformational ensembles may contain infor-
mation about the most likely bound conformation of
compounds bound to their protein target. TACS has
been designed to find this intrinsic information, if it
exists.

A number of approaches have been developed for
solving the problem of generating bound conformation

hypotheses in the absence of protein structure. Some
methods focus on using hypothetical receptor binding
site topology as a basis for evaluating the “fit” and hence
binding conformations of new chemical entities; methods
in this category include active-site modeling,1-5 receptor
surface modeling,6,7 and hypothetical active-site lattice
modeling.8,9 The problem with these approaches is that
the generated receptor topologies often have little
structural resemblance to their natural counterparts.10

Other methods focus on consensus ligand geometry,
using either feature-based (pharmacophore) or atomistic
representations. Pharmacophore mapping techniques
include DISCO11 and HipHop/HypoGen.12 Examples of
methods that use explicit representations of molecular
structure include the active-site approach, based on
Marshall’s active analogue approach,13 and ensemble
distance geometry.14,15 A notable example, bearing
particular import to this paper, is molecular shape
analysis (MSA) developed by Hopfinger16 where the
quantitative characterization of molecular shape and its
relation to biological activity are used to form quantita-
tive structure-activity relationship (QSAR) equations.
The chief weakness of MSA is the assumption that the
lowest-energy conformer of the most active (or highest-
affinity) compound represents the bound conformation.
Furthermore, if some a priori evidence exists that this
is not the case, then the user must subjectively choose
which conformation of the highest-affinity compound
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will serve as the shape analysis template. In this paper,
we describe a methodology similar to MSA that gener-
ates predictive QSARs not as an end but a means to
generating a robust hypothesis of bound ligand confor-
mation(s). TACS has the added advantage of not requir-
ing molecular alignment or subjective involvement of
the investigator.

Because it is a well-known fact that 3-D (spatial)
properties of biological molecules govern their biological
behavior, the combination of SAR data, conformationally
sensitive 3-D descriptors, and a representation of en-
ergetically accessible conformational ensembles may
contain information about the most likely conformation
of compounds bound to their protein target. The goal of
TACS is to identify this intrinsic information and use
it in identification of the most probable bound confor-
mation of a ligand to a receptor.

Methods

Data Sets. Data sets obtained from various sources
have been used for developing TACS models (Figure 1)
and span three different biological domains. In total,
five-benchmark protein-ligand couples, where the con-
formation of a bound ligand has been previously estab-
lished using X-ray crystallography, were employed to
demonstrate this method.

(i) Retinoic Acid Receptor γ. A set of 14 retinoic
acid receptor (RARγ) agonists have been collected from
the published work described by Dawson et al.,17 with
in vitro activities of RARγ expressed as EC50 values
ranging from 2 to 2300 nM. They are SR-11004, SR-
11202, SR-11215, SR-11224, SR-11201, SR-11332, SR-
11225, SR-11247, SR-11245, SR-11251, SR-11249, SR-
11269, 9-trans-retinoic acid (t-RA), and 9-cis-retinoic
acid (c-RA). The first 12 compounds plus t-RA were used
as a training set to predict the bound conformation of
c-RA; conversely, the first 12 compounds plus c-RA were
used to predict the bound conformation of t-RA. The
crystallographic structures of c-RA18 and t-RA,19 used
for evaluation of TACS predictive ability, were extracted
from the cocrystallized protein structure of RARγ (PDB
ID (resolution): 2LBD (2.0 Å) and 3LBD (2.4 Å)).

(ii) Vitamin D3 Receptor. The vitamin D3 (VD3)
receptor training set used to predict the bound con-
formation of the novel ligand KH1060 is comprised of
seven compounds (VD3, KH-1139, MC-1084, MC-1301,
MC1292, MC1288, and MC1627) where ED50 values
(nM), the effective dose required to reach 50% of

maximal transcriptional activity, span the range of
0.0006-3 nM.20-22 Likewise, the training set for MC1288
contained seven molecules (VD3, KH-1139, KH1060,
MC-1084, MC-1301, MC1292, and MC1627). The crys-
tallographic structures for KH1060 and MC1288 were
extracted from cocrystallized vitamin D3 receptor23

(PDB ID (resolution): 1IE8 (1.52 Å) and 1IE9 (1.40 Å))
and used as the basis of root-mean-squared deviation
(rmsd) comparison with the TACS predicted conforma-
tion.

(iii) Human Rhinovirus 14 Thermolysin. The
human rhinovirus 14 (HRV14) thermolysin training set
consisted of eight compounds (R06, R07, RM2, RR1,
RS1, RS3, RS5, and RS8) possessing an activity range
of 30-2400 nM. In this case, the activity of a given
compound is defined by the concentration required to
reduce plaque count by a factor of 2.24 The crystal-
lographic structure of the test molecule, R04, was
obtained by extraction from cocrystallized HRV1425

structure (PDB ID (resolution): 2R04 (3.00 Å)) as
described above.

In the following section, we describe in detail the five
components of the TACS algorithm: (1) conformational
ensemble generation and processing, (2) 3-D sensitive
descriptor calculation, (3) ensemble descriptor process-
ing, (4) training set assembly and model generation, and
(5) prediction of bound ligand conformation. A schematic
description of the TACS algorithm is given in Figures
2 and 3.

TACS Component 1: Conformational Ensemble
Generation and Processing. All chemical structures
were created using the Sybyl molecular modeling pack-
age26 and assigned Gasteiger-Huckel charges. In this
paper we refer to conformational ensembles using
bracket notation, “〈 〉”, where 〈Mn〉h refers to n conforma-
tions of molecule h (Figure 2). Each member of a TACS
data set likely possesses different numbers of conforma-
tions (i.e., the n value for molecule 1 is not likely to equal
the n value for molecule 2 and so on). The conforma-
tional ensemble for each compound ensemble 〈Mn〉h was
generated by conducting two types of extensive confor-
mational searches: (1) a simulated-annealing search
with 10 cycles of heating to 1000 K for 1.5 ps, followed
by annealing to 200 K over 1.0 ps, with snapshots taken
every 10 fs at all temperatures. The resulting conforma-
tions are then minimized for 100 iterations using the
Tripos force field, with default parameters, BFGS
method and dielectric constant ) 1, (2) an internal
coordinate Monte Carlo search with Go-Scheraga ring
deformation (implemented in Sybyl’s random search)
with the following parameters, max cycle ) 4000, energy
cutoff ) 3 kcal, rms threshold ) 0.1, convergence
threshold ) 0.005, max hit ) 6, check chirality ) on,
maintaining the same energy minimization settings as
described in method 1. All of the ligands were subjected
to both types of conformational searches with exception
of SR-11004, SR-11202, SR-11215, SR-11224, SR-11201,
SR-11332, SR-11225, SR-11247, SR-11245, and SR-
11251 from the RA training ensemble; due to the rigid
nature of these compounds, only the random search was
used. Conformations generated from both searches were
combined for further processing.

A conformational filter was then applied to remove
equivalent conformations (rmsd < 0.3) as well as high-

Figure 1. 9-cis-Retinoic (1), 9-trans-retinoic Acid (2), KH1060
(3), MC1288 (4), and R04 (5).
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energy conformations using a conformational energy
cutoff of 13 kcal/mol above the global minima. If the
number of remaining m (i.e., n f m) conformations for
a given ligand is more then 7000, then further reduction
is accomplished by removing conformations with rmsd
< 0.5. In keeping with the notation established above,
〈Mm〉h represents the filtered conformational ensemble
of molecule h containing m conformations (again where
m is different among all molecules).

TACS Component 2: 3-D Sensitive Descriptor
Calculation. Atom-centered partial charges are calcu-
lated for all m conformations in each ensemble via
Mulliken population analysis using the AM1 semiem-
pirical Hamiltonian.27 A collection of 3-D sensitive de-
scriptors are calculated using the following software
packages: Volsurf,28 Sybyl, Cerius2,29 and QSARIS.30

Descriptors include highest-occupied molecular orbi-
tal (HOMO) and lowest-unoccupied molecular orbital
(LUMO) energies, Jurs and Shadow indices, compara-
tive molecular moment analysis (CoMMA) descriptors,
sums of absolute charge values, molecular dipole, largest
positive charge, polarizibility, specific polarizibility
(QSARIS), solvent excluded volume, and surface area,

which represents the accessible surface (in Å2) traced
out by solvent.

To further describe the molecular shape of each
conformation, the following custom descriptors are also
calculated: the largest distance between two heavy
atoms (Å), pseudotorsions between these largest-dis-
tance atoms (i.e., heavy atoms used for distance calcu-
lation and their immediate heavy atom neighbors),
rugasity, and globularity.31 In all, 128 3-D sensitive
descriptors are generated for every conformation in each
ensemble, leading to 〈MDm〉h, where MD refers to the
conformational ensemble bioactivity and descriptor
matrix. Each row vector contains an index denoting
conformer number, a bioactivity value followed by
descriptors.

TACS Component 3: Ensemble Descriptor Pre-
processing. For a data set containing H molecules,
individual conformational ensemble matrixes 〈MDm〉h
are then assembled to form a large matrix [〈MDm〉1‚‚‚
〈MDm〉H]T. Then, to reduce descriptor space dimension-
ality in the concatenated ensembles, highly cross-
correlated descriptors (R2

XC > 0.7) are eliminated, giving
rise to [〈MD′m〉1‚‚‚〈MD′m〉H]T, where D′ refers to the

Figure 2. The TACS algorithm. 〈M〉 ) conformational ensemble for a given molecule, H ) number of molecules in dataset, h )
molecule index, n ) original number of conformations of molecule h, m ) reduced number of conformations of molecule h, D )
descriptor space, D′ ) reduced descriptor space, o ∼ 10% of m, x ) subensemble (integer from 1 to 10), D′′ ) further reduced
descriptor space, 〈Mi〉test1 ) ensemble for test molecule 1, i ) number of conformations in the test set.
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reduced descriptor space. The matrix [〈MD′m〉1‚‚‚〈MD′m〉H]T
is then separated into individual ensembles 〈MD′m〉h and
principal components are then generated for each
〈MD′m〉h (explaining 90% variance). For this purpose,
descriptors were temporarily normalized to unit vari-
ance and mean centered. A table of principal component
(PC)-based Euclidian distances between pairs of con-
formations is generated and stored for later use in
diversity analysis.32 The conformational ensembles for
each ligand are then evenly divided into a maximum of
10 subensembles 〈MD′o〉h,x (x ) subensemble index;
when x ) 10 the number of conformations in each
subensemble is o ≈ m/10) with decreasing diversity,
where the subensemble with x ) 1 is the most diverse.
For very rigid ligands, for instance where m < 10, all
conformations are assigned to one subensemble. Finally,
ligands for which the bound conformation is sought
(“test set” ligands) are processed differently; only one
subensemble 〈MD′i〉test1 representing the 20% most
diverse conformations is used. If the test ensemble
contains <200 conformations, then only 50% of the most
diverse conformations are used. Any number of test
molecules (test1, test2, ...) can be evaluated.

TACS Component 4: Training Set Assembly and
Model Generation. The creation of the training set is
an iterative process designed to maximize information
content and is implemented as follows:

(a) Join together the first most diverse (x ) 1)
subensembles [〈MD′o〉1,1‚‚‚〈MD′o〉H,1]T of all H ligands
excluding the test set; this matrix is referred to as the
“initial training set”.

(b) Eliminate highly correlated descriptors (R2
XC >

0.7) from the initial training set, followed by mean
centering and normalization to unit variance. This
process results in the reduced matrix of the initial
training set [〈MD′′o〉1,1‚‚‚〈MD′′o〉H,1]T.

(c) Using the three QSAR methodologies, build sepa-
rate models that correlate biological activity/affinity and

descriptor space in the [〈MD′′o〉1,1‚‚‚〈MD′′o〉H,1]T matrix.
In this study, three statistical methods, partial least-
squares (PLS, components ) 3),33 multiple linear re-
gression,34 and forward stepwise regression (maximum
steps ) 10 and F ) 4.00)35 are employed. Models are
optimized by an iterative process, described below, using
the following statistical termination criteria: if {R2

curr
> 0.5} and {R2

curr - F2
rnd > 0.2}, then the algorithm

terminates resulting in a “final model”. Here, R2
curr is

the correlation coefficient for the most recently evalu-
ated training set, and F2

rnd ) [∑j)1
19 Rrnd,k

2 /19] + SDrnd

Rrnd,k
2 is the squared correlation coefficient of the kth

randomization trial (randomization trials are conducted
at the 95% certainty level, 19 repetitions), and SDrnd is
the standard deviation of the 19 trials.

(d) Evaluate individual multiple linear regression
(MLR), forward stepwise regression (FSR), and PLS
models using the termination criteria. Note that differ-
ent models may be derived from different training sets.
Any models not meeting the said criteria are subjected
to the following iterative procedure: the subensemble
of the molecule with the most conformations (m) is
substituted with the second most diverse subensemble
(〈MD′o〉h,2) to form a new training set. For instance, if
the second molecule of a given training set possesses
the highest value of m, then [〈MD′′o〉1,1, 〈MD′′o〉2,1‚‚‚
〈MD′′o〉H,1]T becomes [〈MD′′o〉1,1, 〈MD′′o〉2,2‚‚‚〈MD′′o〉H,1]T.
If the substitution does not lead to model(s) that satisfy
the termination criteria, then revert to the original
ensemble and the substitution continues as described
above for the second, most conformationally populated
ligand. If all options for ligands that have more then
one subensemble are exhausted, then the procedure is
repeated by the simultaneous substitution of two ligand
subensembles and so on. If termination criteria are not
met after all subensemble combinations are exhausted,
the algorithm is aborted (never encountered in the
author’s experience).

TACS Component 5: Prediction of Bound Con-
formation(s). Once satisfactory models are generated,
the descriptor space of each test ligand ensemble is
normalized using the parameters generated during
normalization of the training set that passed termina-
tion criteria during training, giving 〈MD′′i〉test1. This
procedure, although not guaranteeing consistent nor-
malization across training and test descriptor space, has
the practical advantage of facilitating continued use of
successful models. Test molecules and their requisite
descriptors are added to each of the three training sets;
we refer to these as the “test sets”. Each of the models
is then used to predict the biological activity of every
test molecule conformer in the test set ensemble, and
the results are tabulated.

An evaluation procedure, which takes into account the
errors in biological activity prediction and the relation-
ship of these errors to the descriptor space, was devised
to determine the most probable binding conformation
of the test molecule(s) (Figure 3). The evaluation
procedure is as follows:

(a) For every model, calculate the residuals between
predicted and observed activity, ∆Yi

j ) Yi
j - Yobs for

each conformation of each test set molecule. This
equation is generalized to allow for using more than
j ) 3 statistical methods.

Figure 3. TACS voting scheme. Throughout j refers to the
jth statistical method. ∆Yi

j ) Yi
j - Yobs ) residuals, PCA )

principal component analysis, 〈MPCi〉 ) principal component
matrix for conformational ensemble, X ) normalization coef-
ficient, Ranki,j ) rank of the ith conformation in the test
ensemble, ∆Ymin

j ) smallest absolute value of a prediction
residual, Tmod

j ) modified Tanimoto coefficient, (Rj,TY)2 )
squared correlation between Tmod

j and ∆Yi
j.
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(b) Assign a rank (denoted by 1 g Ranki,j g i) to each
of the i conformers in the test ligand ensemble, where
the conformer with the lowest |∆Yi

j| value is set to 1;
we refer to this as the base conformer.

(c) Generate principal components with 90% variance
explained on the test ligand ensemble alone, leading to
〈MPCi〉test1.

(d) For each of the three statistical models, calculate
a modified Tanimoto coefficient (Tmod

j ) between each
conformation in the test set and the base conformer in
principal components space.

where

and

Here, PCik refers to the kth principal component of the
ith conformation; likewise PCbase,k refers to the base
conformation; wk is a normalization factor corresponding
to the percent variance explained by the kth PC.

Then calculate the squared correlation coefficient,
(Rj,TY)2, between these Tannimoto distances and the
residuals ∆Yi

j ) Yi
j - Yobs; tabulate (Rj,TY)2. A normal-

ization coefficient X is then defined as

where ∆Ymin
j is the value of the smallest residual.

(e) By use of the assigned rank, the TACS voting
equation is defined as

(f) Use eq 3 to assign votei to each test set conforma-
tion and identify the probable binding conformation
based on the highest voting score. The voting equation

assigns weight to each statistical method for its contri-
bution to decision process.

Results and Discussion
TACS Predictive Power. TACS results from the

five test ligands are given in Table 1. Vote-winning
conformations (i.e., most likely bound conformations)
were superimposed on their respective structural coun-
terparts extracted from cocrystallized ligand-protein
assemblies. The heavy-atom rmsd of pairwise atomic
distances ranges from 0.175 Å for RA to 1.55 Å for
KH1060 (Figure 4, Table 2).

In the case of t-RA (2) (rmsd ) 0.175 Å), TACS
correctly identified the hydrophobic cyclohexene ring
position and puckering, as well as the orientation of the
carboxylate moiety with respect to the ring; the rmsd
value is within the crystallographic error. Only slight
deviations were noted in the unsaturated chain, where
the chain in the crystal structure appeared to be flat
with average torsion around the single bonds of 176.68°,
as compared to 168.70° in the TACS structure. The
distances between the carbonyl oxygen and C1 were
11.85 and 11.79 Å for the crystal structure and TACS
structure, respectively.

Similar to the results above, the TACS predicted
conformation of c-RA closely matches the crystallo-
graphic structure with an rmsd of 0.223 Å. Average
torsion around the single bonds in the unsaturated
chain of the crystal structure is 178.77° as compared to
the 165.23° in the TACS conformation. The biggest
contribution to the rmsd was the C13-C14-C15-O2
bond torsion, which erred by 16.43°. Compensating for
this is the C1-O1 distance difference of only 0.08 Å that
places the hydrophilic and hydrophobic moieties at the
correct relative configuration.

The variety of structural features in the vitamin D3
ligand, MC1288, such as ring systems, conjugated
alkene, and flexible saturated chain, did not present any
problems for TACS conformational elucidation. The
rmsd superposition of 0.349 Å is within the experimen-

Table 1. Voting Results for Three Best Conformations from Each Test Set Ensemble

name rankPLS votePLS rankMLR voteMLR rankFSR voteFSR average vote %vote final rank

CIS00053 1 24 2 6.8 1 62.9 31.4 20.4 1
CIS00054 2 12 3 4.53 2 31.5 16.1 10.4 2
CIS00052 3 8.1 1 13.6 3 21 14.2 9.25 3
TRA00080 1 92.9 4 0.01 1 7.2 33.4 20.1 1
TRA00043 66 0.1 70 0 2 46.5 15.5 9.34 2
TRA00049 4 1.8 16 0 3 31 10.9 6.57 3
KH2_106000001 1 49 8 3.09 3 8.71 20.3 18.3 1
KH2_106000014 2 25 5 4.95 4 6.54 12 10.3 2
KH2_106000010 9 5.5 1 24.7 10 2.61 10.9 9.06 3
MC12882 1 58 4 1.28 1 36.6 32.1 25.7 1
MC2-128800010 2 29 10 0.51 4 9.14 12.9 10.4 2
MC2-128800008 3 19 8 0.64 2 18.3 12.8 10.3 3
R04_0052 40 0.9 13 2.11 1 38.3 13.8 14.7 1
R04_0029 1 34 40 0.69 49 0.78 11.9 8.05 2
R04_0026 18 1.9 1 27.5 24 1.6 10.3 7.43 3

Tmod
j ) Ni,base/(Ni + Nbase - Ni,base) (1)

Ni ) e∑kwkPCik, Nbase ) e∑kwkPCbase,k

Ni,base ) e∑kwkPCik - e∑kwkPCbase,k

X ) [∑1
j ∑i

n(Rj,TY)2

∆Ymin
j ]-1

(2)

votei ) ∑1
j X(Rj,TY)2

Ranki,j∆Ymin
j

(3)

Table 2. Superimposition of Heavy Atoms of TACS-Picked
Conformations on Their Structural Counterparts

name rmsd for heavy atoms (Å) standard deviation mean

c-RA 0.22303 0.15976 0.16
t-RA 0.17529 0.10131 0.14
KH1060 1.54597 0.79541 1.33
MC1288 0.34963 0.1826 0.3
R04 1.01321 0.46808 0.9
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tal error for the crystallographic structure. Both ring
systems (cyclohexane and bicyclo[4.0.3]) were predicted
with correct configurations including correct spatial
orientation. The majority of the rmsd arose due to
deviations in the flexible saturated chain, specifically
torsion around the C18-C19-C20-C21 bond, where
the crystallographic structure “cisoid” arrangement was
not correctly identified (torsions were -64.86° and
-95.94° for crystal and TACS structures, respectively).
The prediction of pharmacophoric features such as,
O2 f O3 distance (crystal structure ) 13.64 Å and
TACS ) 12.88 Å), O1-O2-O3 pseudoangle (crystal
structure ) 105.76° and TACS ) 115.78°), and
O1-O2-C22-O3 pseudotorsion (crystal structure )
-71.34 and TACS ) -99.49°) suggest the robustness
of the TACS algorithm.

However, TACS applied to another vitamin D3 ligand,
KH1060, resulted in a larger rmsd of 1.546 Å. Although
TACS correctly identified the orientation of the ring
systems and their substituents, the algorithm had
marginal success in orienting the saturated chain. This
was due to deviation of the C18-O4-C20-C21 bond
torsion (24.84 and -170.45° for TACS and crystal
structure, respectively), resulting in a different orienta-
tion that the hydrophobic constituents of the molecule
undertake on the paths from O1 f O3 and O2 f O3
hydroxyl moieties. The protein-ligand hydrogen bond-
ing interaction present in the crystal structure could be
reproduced by docking the TACS structure in the
binding pocket for most of the ligand’s hydroxyl groups.
However, the H bond of the aliphatic OH group could
not be reproduced. The His397 moiety of the protein
interacts with the aliphatic OH of the ligand’s crystal
structure, whereas the His308 interacts with the TACS
ligand (data not shown).

TACS prediction of the HRV14 ligand, R04, resulted
with overall orientation of the pharmacophoric elements
(methylisoxazole and phenyloxazole) similar to the
orientation of the crystal structure. TACS predicted
distances between N1 f O3, and O1 f N2 were 16.76
and 14.83 Å, respectively, as compared to 16.10 and
15.64 Å in the crystal structure, observations well
within the crystallographic structure resolution (3.00 Å).
Deviations from the crystal structure arise from im-
proper rotation at the C9-O2-C8-C7 torsion, resulting
in the saturated chain pointing 129° away from the
proper orientation (after the imidazole and phenyl
groups were superimposed, data not shown). Docking
the TACS ligand into the binding site resulted in
moderate overlap with the R04 crystal structure orien-
tation. In addition, TACS was able to capture the only
H bond (N1-Asn219) present in the cocrystallized
complex.

Assessment of Predictive Robustness. The TACS
method correctly identified binding conformations in
three out of five test case ligands (c-RA, t-RA, and
MC1288) with very low rmsd, predicted correct orienta-
tion and critical pharmacophore interactions for R04,
and performed only marginally for KH1060. The relative
ability of TACS to predict bound conformations depends
on (1) the robustness of the TACS algorithm, particu-
larly as related to the statistical method(s) employed,
(2) the D-space information content relative to moieties
critical in molecular recognition, and (3) bias in confor-
mational ensembles due to force-field inaccuracies.

A good indication of TACS performance may be the
correlation coefficient between the above-described Tan-
nimoto distance and the biological activity residuals
[(Rj,TY)2]. For example, in the c-RA, t-RA, and MC1288
activity predictions, at the least one statistical method

Figure 4. Superimposition of resulting TACS conformations on their respective cocrystallized structural counterparts. Extracted
crystallographic structures are annotated with suffix -CS.
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(PLS or FSR not MLR) yielded a correlation coefficient
(Rj,TY)2 between the Tannimoto distance (D-space) and
residuals (∆Y ) Yi

j - Yobs) of 0.5 or better (Table 3).
This was not observed in the KH1060 and R04 studies
(the best KH1060 (Rj,TY)2 ) 0.037, nor was it observed
with the best R04 model (Rj,TY)2 ) 0.051). Furthermore,
there appears to be linear relationship (r2 ) 0.8854)
between (Rj,TY)2 and rmsd (Figure 5). These observations
indicate that more robust measures of TACS prediction,
as well as confidence measures, can be developed in the
future. Additionally, an intriguing unknown is the
behavior of TACS in data sets characterized by multiple
family specific binding modes that are known to exist.

Clearly with KH1060 and R04, the statistical methods
failed to fully explain the descriptor spacesactivity
relationship despite satisfying our reasonably conserva-
tive criteria for retention training set models (R2

curr >
0.5 and R2

curr - F2 > 0.2, Table 4). We are currently
investigating whether these global estimators of model
quality will provide a threshold value, below which
models should not be used in TACS. However, because
certain regions of a molecule may be more significant
than others in contributing to binding free energies, it
is likely that more robust “local” estimators will eventu-
ally be required for TACS to perform best.

The more probable cause for TACS inaccuracy ap-
pears to be how descriptor space information is utilized.
The rudimentary statistical methods employed in this
study weight heavily those descriptors correlated to the
biological activity or affinity. Therefore, the descriptors
that describe regions of molecules that interact with the
receptor without specific orientation (such as the hy-
drophobic chain of R04) may be underrepresented.
Additional inaccuracies may arise from insufficient
descriptor space description of critical pharmacophoric
moieties. For instance, in the studies with KH1060 and
R04, the inaccuracies may arise due to incomplete
description of the oxygen atom and its environment in
the hydrophobic saturated chain. We were intrigued by
the observation that the KH1060 prediction was con-
siderably worse than prediction for MC1288, given that
these two compounds interact with the same binding
site and are structurally similar. The training set for
KH1060 contains MC1288 and vice versa; final training
sets are composed of essentially equivalent conforma-
tions and descriptor spaces. In this case, only one
training set ligand possesses similar structural features
to KH1060 (specifically, an ether moiety, O-C, in the
saturated chain) where the rest of the training set
molecules have more structural similarity to MC1288.
In certain cases, where a single moiety contributes
significantly to the affinity or activity of a particular
compound class, it may be necessary for the training
set to contain more than one example of molecules
containing that moiety.

In our attempts to determine the source of TACS error
with KH1060 and R04, we observed these molecules
contain a shared structural feature, the aliphatic ether.
It so happens that the major contributor to the rmsd in
both cases is the ether torsion (C-O-C-C) angle.
Examination of the conformational ensemble for these
compounds indicates that conformational space is ad-
equately represented, in that numerous conformations
similar to their respective crystallized counterparts (i.e.,
low rmsd) were found. We then focused on the possibility
that descriptors relating specifically to the saturated
chain C-O-C-C system are not properly represented
(1) due to poor electrostatic force field parametrization
and the subsequent effect on descriptor values or (2)
statistical method failure to adequately emphasize these
descriptors. Taken together, poor model performance
(R2

curr) and marginal rmsd in the KH1060 case, accept-
able performance in R04, good rmsd for MC1288, and
very low (Rj,TY)2 for either R04 and KH1060 would point
to both factors as sources of error. Unfortunately,
further work will be required to determine to what
extent each of these are contributing factors.

Voting Mechanism. In early TACS development, we
endeavored to find a single statistical method that

Table 3. Correlation Coefficients (RJ,TY)2

name (RPLS,TY)2 (RMLR,TY)2 (RFSR,TY)2

c-RA 0.51 0.272 0.621
t-RA 0.752 0.0037 0.4916
MC1288 0.5021 0.1225 0.3083
KH1060 0.037 0.0352 0.02352
R04 0.0485 0.051 0.0007

Figure 5. The relationship of the best correlation coefficient
between Tanimoto distance and residuals (Rj,TY)2 versus the
superimposition rmsd.

Table 4. Results from Training Set Construction and Randomization Trialsa

PLS MLR FSR

name R2
curr F2 S R2

rnd R2
curr - F2 R2

curr F2 S R2
rnd R2

curr - F2 R2
curr F2 S R2

rnd R2
curr - F2

c-RA 0.86 0.27 0.18 0.77 0.99 0.69 0.06 0.30 0.81 0.30 0.06 0.51
t-RA 0.91 0.33 0.21 0.58 0.99 0.75 0.07 0.24 0.92 0.34 0.09 0.58
MC1288 0.91 0.22 0.16 0.69 0.92 0.73 0.14 0.19 0.92 0.36 0.09 0.56
KH1060 0.63 0.22 0.11 0.41 0.74 0.55 0.09 0.19 0.52 0.30 0.11 0.21
R04 0.50 0.31 0.07 0.19 0.74 0.54 0.10 0.20 0.99 0.32 0.10 0.67

a R2
curr ) correlation coefficient of the current model, F2 ) randomization correlation coefficient, R2

rnd ) F2, S ) standard deviation.
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would be powerful enough for binding conformation
elucidation. A more sophisticated statistical technique,
genetic partial least squares (G/PLS), provided overall
better results than any of the other single methods
(MLR, PLS, FSR), but only provided moderate rmsd
predictions. We observed a given statistical method
would frequently find low rmsd conformations, but only
for some of the test molecules, whereas alternate
statistical method(s) would elucidate other members of
the test sets. Because we were unable to develop a
heuristic to assess the accuracy of a single model on
given test molecules, we opted to develop a mechanism
that makes use of multiple models. Inspired by current
interest in the modeling community regarding the use
of consensus data, based on multiple models, we devel-
oped the TACS voting method that seeks to extract
relevant information for a given test conformation from
multiple models.

The hypothesis guiding the voting algorithm’s design
was that if a given statistical method was able to
distinguish between the noise and signal in the training
set then residuals in biological activity predictions for
the test set conformational ensemble should correlate
with the descriptor space diversity of the test set
ensemble (Rj,TY)2. Please refer to section “TACS Com-
ponent 4: Prediction of Bound Conformation(s)” above
for a description of how variance of the descriptor space
is represented as a one-dimensional data vector. Com-
bined use of the (Rj,TY)2 metric in combination with
lowest residual metric (∆Ymin) led to a voting mechanism
that properly identifies the under-performing statistical
method(s).

For example, MLR gave better results (R2
curr) than

those of PLS in all cases and performed better than FSR
in three cases (c-RA, t-RA, and KH1060), but the TACS
voting mechanism identified MLR as having the weak-
est predictive power. The best (Rj,TY)2 using MLR was
seen with c-RA ((RMLR,TY)2 ) 0.27), and based on the
comparison of (RPLS,TY)2 ) 0.51, (RFSR,TY)2 ) 0.62 the vote
weight was only 18.7%. Even better resolution was
obtained by application of full-voting mechanism and
the final contribution of voteMLR was only 13.6%. The
trend where the MLR was identified as the poorest
statistical performer was observed throughout training
test set ensembles for all ligands.

Another example of how the voting mechanism was
able to equate the predictive ability of given statistical
methods is model generation for R04. The FSR model
with R2

curr ) 0.99 outperformed PLS (R2
curr ) 0.50).

However, the significance in contribution from each
method in choosing the final conformation was about
the same with voteFSR ) 38.4 and votePLS ) 34.

Correlation between %vote and rmsd for heavy atoms
of the top six vote receiving conformations is given in
Table 5. These results demonstrate that the voting
mechanism was able to distinguish the probable bound
conformations from the rest of the conformations for
three out of five test molecules. With KH1060 and R04,
TACS failed to pick the conformation with lower rmsd
for reasons stated above.

Next Steps. It is anticipated there exist four issues
that, if properly investigated, will lead to an increase
in the TACS predictive ability. The first is assessment
of TACS sensitivity toward how training sets are

constructed, especially as it relates to ensuring a high
level of data density in the final training set. Second,
the impact of conformational ensemble complexity,
conformation removal criteria, and the effect of rigid
ligands must be assessed. Third, we anticipate that
better parametrization of the force field(s) used in
conformational searching will increase TACS’ predictive
ability. And fourth, the use of alternative, perhaps
unsupervised, statistical techniques may provide more
uniform coverage of factors contributing to binding
conformation, in that more emphasis may need to be
placed on regions of the molecule that do not contribute
significantly to binding free energy. We are currently
investigating the robustness of TACS methodology on
test cases where the binding site is interfacial or ill
defined to assess the methods broader utility.

Conclusion

TACS is a promising new method that elucidates
bound ligand conformational hypotheses in the absence
of target protein structure. This methodology should
provide much needed insight in ligand-based drug
design or as a complement to structure-based drug
design. The key innovations are that TACS requires
only a small training set of molecules (and their respec-
tive activity or affinity toward the target) and no
subjective user intervention (such as molecular align-
ment).

Note Added after ASAP Publication. This manu-
script was released ASAP on 11/26/2004 with an incor-
rect ordering of the names in the authorship listing,
with errors in the formatting of eq 1 and in the two

Table 5. Correlation of %Vote and rmsd for Heavy Atoms (Å)
of the First Six Highest Vote-Receiving Conformations

name %vote

rmsd for
heavy
atoms

(Å)
standard
deviation mean

R2 %vote
vs rmsd

CIS00053 20.38 0.22 0.16 0.16 0.73
CIS00054 10.44 0.45 0.22 0.39
CIS00052 9.25 0.51 0.30 0.41
CIS00050 3.73 2.11 0.83 1.93
CIS00507 2.89 2.76 1.30 2.43
CIS00151 2.86 2.60 2.03 2.29
TRA00080 20.09 0.18 0.10 0.14 0.87
TRA00043 9.34 0.97 0.62 0.75
TRA00049 6.57 1.08 0.67 0.84
TRA00043 5.80 1.17 0.68 0.96
TRA00309 4.18 1.63 0.76 1.44
TRA00033 2.70 2.02 1.00 1.76
MC12882 25.70 0.35 0.18 0.30 0.94
MC2-128800010 10.40 2.31 1.27 1.93
MC2-128800008 10.30 2.44 1.27 2.08
MC2-128800111 7.24 2.37 1.09 2.15
MC2-128800909 5.25 2.49 1.25 2.20
MC2-128802014 3.94 2.69 1.05 2.47
KH2_106000001 18.30 1.55 0.80 1.33 0.17
KH2_106000014 10.30 3.28 1.60 2.86
KH2_106000010 9.06 3.03 1.40 2.70
KH2_106003012 6.47 1.46 0.76 1.30
KH2_106000318 5.72 2.77 1.45 2.35
KH2_106001007 5.63 3.07 1.40 2.65
R04_0052 14.70 1.01 0.47 0.90 0.14
R04_0029 8.05 3.53 1.04 3.38
R04_0026 7.43 4.29 1.55 4.00
R04_0512 5.45 3.55 1.80 3.04
R04_0001 4.66 0.69 0.20 0.56
R04_1138 4.06 3.63 1.70 2.91
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subsequent equations, with an error in a straddle
heading of Table 4, and with minor text errors. The
correct version was posted on 12/8/2004.
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